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The cationic ruthenium catalyst Ru3(CO)12/NH4PF6 was
found to be highly effective for the intermolecular coupl-
ing reaction of pyrroles and terminal alkynes to give gem-
selective R-vinylpyrroles. The carbon isotope effect on the
R-pyrrole carbon and the Hammett correlation from a series
of para-substituted N-arylpyrroles (F=-0.90) indicate a
rate-limiting C-C bond formation step of the coupling
reaction.

C-Vinylated pyrroles are important building blocks for
forming porphyrins and related nitrogenmacrocycles as well
as for serving as precursors for photoactive polymeric mate-
rials.1 Compared to the traditional arene substitution
methods using stoichiometric reagents, transition-metal-cata-
lyzed C-H bond activation methods have been shown to
exhibit a number of salient features such as increasing effi-
ciency and reducing wasteful byproducts in introducing the
vinyl group directly to pyrroles and related heteroarene
compounds.2 Pd catalysts have been found to be particularly
versatile in mediating C-H oxidative coupling reactions of
substituted pyrroles, pyridines, and indoles, where the regio-
selectivity hasoften been found tobedictatedbyboth the steric

and electronic nature of the arene substituents.3 The direct
oxidative arylation of indoles and quinoline N-oxides has also
been achieved by using Pd catalysts.4 Cationic Ru-allyl and -
vinylidene complexeshavebeen successfullyutilizedas catalysts
for allylation and alkenylation of indoles and pyridine deriva-
tives, respectively.5 A novel regioselective insertion of alkynes
to both Ar-H and Ar-CN bonds of N-protected 3-cyanoin-
doles and related heteroarenes has been achieved by using
Ni-phosphine catalysts.6 Though the gem-selective oxidative
coupling reaction of indolizines and alkenes has recently been
accomplished by using Pd catalysts with bidentate nitrogen
ligands,7 lack of generally reliable cis- and gem-selective vinyla-
tionmethods continues tobeamajorproblem in catalyticC-H
alkenylation methods for pyrroles and related nitrogen arene
compounds, since the formation of trans-selective vinyl pro-
ducts is normally favored for these catalytic reactions.

While exploring the scope of the ruthenium-catalyzed coup-
ling reactions involving C-Hbond activation, we have recently
developed a number of regioselective cyclization methods from
the coupling reaction of arylamines and pyrroles with terminal
alkynes by using the cationic ruthenium catalytic system Ru3-
(CO)12/NH4PF6.

8 Here we report a highly regioselective forma-
tion ofR-gem-vinylpyrroles from the ruthenium-catalyzed inter-
molecular coupling reaction of pyrroles and terminal alkynes.

The treatment ofN-methylpyrrole (1.0mmol) with 4-ethy-
nylanisole (2.0 mmol) in the presence of Ru3(CO)12/NH4PF6

(1:3, 3 mol % Ru) in benzene (3 mL) at 95 �C for 8 h cleanly
produced the R-gem-vinylpyrrole product 1a (eq 1). The
product was isolated in 99% yield after a simple silica gel
column chromatography (CH2Cl2/hexanes) and was fully
characterized by both spectroscopic methods and elemental
analysis. The initial survey of ruthenium catalysts showed
that both Ru3(CO)12 and NH4PF6 are essential for the cata-
lytic activity. Other selected neutral and cationic ruthenium
catalysts, such as RuCl3 3 3H2O, (PPh3)3RuHCl, [(COD)-
RuCl2]x (PCy3)2(CO)RuHCl, and [(PCy3)2(CO)(CH3CN)2-
RuH]þBF4

-, were not effective in giving the coupling pro-
duct under the similar reaction conditions.

The scope of the coupling reaction was explored by using
the Ru3(CO)12/NH4PF6 catalytic system (Table 1). Both
N-alkyl- and N-arylpyrroles were found to react smoothly
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with aryl-substituted terminal alkynes to give the coupling
products, in which arylalkyneswith a para electron-donating
group were found to promote the coupling reaction. Neither
aliphatic-substituted terminal alkynes nor internal alkynes
gave the coupling products under the similar reaction condi-
tions. The regioselective R-insertion products 1q and 1rwere
obtained for 3-methylindole substrate (entries 17 and 18),
while the analogous coupling reaction ofN-methylindole led
to the 2:1 coupling products 1s and 1t, resulting from regio-
selective insertion to the β-carbon (entries 19 and 20). The
molecular structure of 1d was also established by X-ray
crystallography (Figure S3, Supporting Information).9

We performed the following kinetic experiments to gain
mechanistic insights on the coupling reaction. First, the

deuterium-labeling pattern was examined from the treat-
ment of N-phenylpyrrole with DCtCPh (2.5 equiv) and
Ru3(CO)12/NH4PF6 (1:3, 3.0 mol % Ru) in benzene (3 mL)
at 95 �C. The coupling product 1c showed 67% D on the
vinyl as well as 40%on theR-pyrrole positions as determined
by both 1H and 2H NMR (eq 2). Extensive H/D exchange at
the β-carbon of pyrrole may be due to a direct metalation by
the ruthenium catalyst during or after the coupling reaction.
Conversely, the treatment of R,R-dideuteratedN-phenylpyr-
role with HCtCC6H4-p-OMe (2 equiv) yielded the product
with an extensive H/D exchange on both vinyl (33%D) and
R-pyrrole positions. The extensive H/D exchange pattern on
the vinyl positions is indicative of rapid and reversible
alkynyl and R-pyrrole C-H activation steps.

The deuterium isotope effect study also supported the
notion of rapid H/D exchange steps. The rate of the reaction
ofN-phenylpyrrole and 2,5-d2-N-phenylpyrrole with 4-ethy-
nylanisole at 95 �C led to a virtually identical kobs=0.14 h-1,
which translated to kCH/kCD=1.1( 0.2. Similar experiments
from the reaction of N-phenylpyrrole with HCtCPh and
DCtCPh also gave a negligible isotope effect of kCH/kCD=
1.1 ( 0.1 (Figure S2, Supporting Information).9 These
results indicate that the R-C-H bond activation of pyrrole
is not the rate-limiting step for the catalytic reaction.

To discern the rate-limiting step of the coupling reaction,
we next measured the carbon isotope effect from the coup-
ling reaction of N-phenylpyrrole with HCtCPh by employ-
ing Singleton’s isotope measurement technique at natu-
ral abundance.10 Themost pronounced carbon isotope effect
was observed on the R-pyrrole carbon when the 13C ratio of
unreacted N-phenylpyrrole isolated at 75% conversion was
compared to that of the virgin sample (13C(recovered)/13C(virgin)
at CR=1.019, average of 3 runs) (eq 3) (Table S1, Supporting
Information). This result is consistent with the C-C bond rate-
limiting step of the coupling reaction.

To examine the electronic influence on the pyrrole sub-
strate, the Hammett plot was constructed from the correla-
tion of the relative rates with σp for a series of para-substi-
tuted N-arylpyrroles p-X-C6H4NC4H4 (X=OMe, CH3, H,
Cl, F), which led to F=-0.90 (Figure 1). The promotional
effect by electron-releasing group is indicative of a nucleo-
philic nature of the pyrrole group. An analogous correlation
from the reaction of N-phenylpyrrole with para-substituted
arylalkynes p-Y-C6H4CtCH (Y=OMe, CH3, H, Br, F)
resulted in a similar electronic promotional effect, but with a
considerably less negative Hammett F value of-0.42. In this
case, the negative F value suggests a considerable cationic
character on the internal alkynyl carbon, which is stabilized
by the electron-releasing group of the aryl substituent. These
results are consistent with the notion that the C-C bond
formation step is promoted by a nucleophilic pyrrole sub-
strate via a cationic transition state.

TABLE 1. Coupling Reaction of Pyrroles and Indoles with

Terminal Alkynesa

aReaction conditions: pyrrole/indole (1.0 mmol), alkyne (2.0 mmol),
Ru3(CO)12/NH4PF6 (1:3, 3mol%Ru), benzene (3mL), 95 �C, 12-15 h.

(9) See the Supporting Information for the experimental details.
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Aplausiblemechanistic rationale for the coupling reaction
is illustrated on the basis of these results (Scheme 1). We
propose that the catalytically active cationic Ru-pyrrolyl
species 2 is initially formed from an R-C-H insertion of
pyrrole followed by the elimination of an arylalkene. In sup-
port of this hypothesis, the formation of styrene (3%) was
observed from the catalytic coupling reaction of N-phenyl-
pyrrole with PhCtCH as detected by both 1H NMR and
GC-MS.9 Both negligible kH/kD isotope effect and exten-
sive H/D exchange patterns on the coupling reaction are con-
sistent with a rapid and reversible C-H bond activation step.
The observationof the pronouncedR-carbon isotope effect on
the pyrrole substrate provides strong evidence for the rate-
limiting C-C bond formation step. A relatively high negative
Hammett F value from the correlation of para-substituted
N-arylpyrroles indicates that the C-C bond formation step
is promoted by the nucleophilic nature of the R-metalated
pyrrolyl species 2. The formation of gem-selective pyrrole
product 1 can readily be rationalized by invoking a regiose-
lective insertion of pyrrole to the internal alkynyl carbon

in forming sterically less demanding Ru-vinyl species.11

The migratory insertion of alkynes constitutes one of the
well-known organometallic elementary reactions,12 and the
C-C bond forming rate-determining step has been pro-
posed in other ruthenium-catalyzed arene C-H coupling
reactions.13

In summary, the cationic ruthenium catalyst Ru3(CO)12/
NH4PF6 was found to be highly effective for mediating the
regioselective intermolecular coupling reaction of pyrroles
and alkynes to give R-gem-vinylpyrroles. Both carbon iso-
tope effect and Hammett study support a mechanism of the
coupling reaction involving rate-limiting C-C bond forma-
tion step. The catalytic coupling reaction provides a reliable,
atom-economical method for directly introducing synthe-
tically useful gem-vinyl group to pyrroles and indoles.

Experimental Section

Representative Procedure of the Catalytic Reaction. In a
glovebox, Ru3(CO)12 (22 mg, 0.030 mmol), NH4PF6 (16 mg,
0.10 mmol), pyrrole (1.0 mmol), and an alkyne (2.0 mmol,
2 equiv) were dissolved in 3 mL of benzene solution in a
25 mL Schlenk tube equipped with a magnetic stirring bar.
The tube was brought out of the glovebox and was stirred in an
oil bath set at 95 �C for 12-15 h. The tube was cooled to room
temperature, and the crude product mixture was analyzed by
GC-MS. The solvent was removed under a rotary evaporator,
and analytically pure organic product was isolated by a column
chromatography on silica gel (CH2Cl2/hexanes).

2-[1-(4-Methoxyphenyl)ethenyl-1-methylpyrrole (1a) was
synthesized from the reaction of N-methylpyrrole (81 mg) with
4-ethynylanisole (265mg) following the general procedure. For 1a:
1H NMR (400 MHz, acetone-d6) δ 7.2-6.9 (m, 4H), 6.7-6.1 (m,
3H), 5.46 (d, J=1.6 Hz), 5.15 (d, J=1.6 Hz), 3.81 (s, 3H), 3.30 (s,
3H); 13C{1H} NMR (100 MHz, acetone-d6) δ 160.5, 142.4, 134.6,
134.4, 129.1, 124.4, 114.8, 113.8, 110.9, 107.9, 55.4, 35.1; HREI
(m/z) calcd for C14H15NO (Mþ) 213.1154, found 213.1144.
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FIGURE 1. Hammett plots of the coupling reaction of para-sub-
stituted p-X-C6H4NC4H4 (X=OMe, CH3, H, Cl, F) with PhCtCH
(b) and the reaction ofN-phenylpyrrole with p-Y-C6H4CtCH (Y=
OMe, CH3, H, Br, F) (9).

SCHEME 1

(11) As the reviewers pointed out, alternative mechanistic pathways
involving cationic Ru-acetylide or direct metalation of pyrrole substrate
can also be considered (for example, see recently proposed mechanisms in
ref 8).While these mechanistic paths cannot readily explain the gem-selective
formation of the coupling products, they could not be rigorously ruled out on
the basis of available data.
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